SharpRazor: Automatic removal of hair and ruler marks from dermoscopy images

Author:

Kasmi Reda1,Hagerty Jason2,Young Reagan3,Lama Norsang3,Nepal Januka3,Miinch Jessica3,Stoecker William2,Stanley R Joe3

Affiliation:

1. Faculty of Technology, Laboratoire de Technologie Industrielle et de l'Information (LTII) University of Bejaia Bejaia Algeria

2. S&A Technology Rolla Missouri USA

3. Department of Electrical and Computer Engineering Missouri University of Science and Technology Rolla Missouri USA

Abstract

AbstractBackgroundThe removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection.PurposeThe aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image.MethodWe introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple‐filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri‐directional gradients, and multiple filters for hair of varying widths. We develop an alternate entropy‐based processing adaptive thresholding method. White or light‐colored hair, and ruler marks are detected separately and added to the final hair mask. A classifier removes noise objects. Finally, a new technique of inpainting is presented, and this is utilized to remove the detected object from the lesion image.ResultsThe proposed algorithm is tested on two datasets, and compares with seven existing methods measuring accuracy, precision, recall, dice, and Jaccard scores. SharpRazor is shown to outperform existing methods.ConclusionThe Shaprazor techniques show the promise to reach the purpose of removing and inpaint both dark and white hair in a wide variety of lesions.

Publisher

Wiley

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3