Seismic on floating ice: data acquisition versus flexural wave noise

Author:

Johansen Tor Arne123ORCID,Ruud Bent Ole12ORCID,Tømmerbakke Ronny12ORCID,Jensen Kristian1ORCID

Affiliation:

1. Department of Earth Science University of Bergen Postbox 7803 NO‐5020 Bergen Norway

2. Research Centre for Arctic Petroleum Exploration, ARCEx Department of Geosciences The Arctic University of Norway Postbox 6050 Langnes NO‐9037 Tromsø Norway

3. The University Centre in Svalbard Arctic Geology Svalbard Science Centre Postbox 156 N‐9171 Longyearbyen Norway

Abstract

ABSTRACTGeophysical surveying of the Arctic will become increasingly important in future prospecting and monitoring of the terrestrial and adjacent areas in this hemisphere. Seismic data acquired on floating ice are hampered with extensive noise due to ice vibrations related to highly dispersive ice flexural waves generated by the seismic source. Several experiments have been conducted on floating ice in van Mijenfjorden in Svalbard in the Norwegian Arctic to specifically analyse the extent of flexural waves recorded with various seismic receivers and sources deployed both on top of ice and in the water below. The data show that flexural waves are severely damped at 5 m or deeper below the ice and hydrophone data suffer less from these vibrations compared with data recorded on the ice. Aliasing of single receiver hydrophone data can to some extent be suppressed using an in‐line line source of detonating cord. Experiments on ice on shallow water show prominent guided wave modes often referred to as Scholte waves propagating along the seabed. In this case, both flexural and Scholte waves interfere and make a complicated pattern of coherent noise. On shallow water, the positioning and type of the seismic source must be evaluated with respect to the coherent noise generated by these waves. Geophone strings of 25 m effectively suppress both flexural and Scholte waves due to their relative short wavelengths. An airgun generates relative more low‐frequency energy than a surface source of detonating cord. Accordingly, seismic mapping of deep seismic horizons seem to be best achieved using geophone strings of such length and an airgun source. For shallow targets, the use of hydrophones in combination with detonating cord is an appropriate solution. Seismic surveying in the Arctic always have to follow environmental restrictions of not disturbing or harming wildlife and not causing permanent footprints into the vulnerable tundra, which implies that the choice of seismic acquisition strategy might occur as a trade‐off between optimum data quality and environmental constraints.

Funder

Norges Forskningsråd

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3