Altered epitopes enhance macrophage‐mediated anti‐tumour immunity to low‐immunogenic tumour mutations

Author:

Yu Qiumin1ORCID,Zhang Tingran1,He Tiandi1,Yang Yifan1,Zhang Wanli1,Kang Yanliang1,Wu Zijie1,Xie Wenbin1,Zheng Jiaxue1,Qian Qianqian1,Li Guozhi1,Zhang Di1,Mao Qiuli1,Gao Zheng1,Wang Xiaoning1,Shi Xupeiyao1,Huang Shitong1,Guo Hanlin1,Zhang Haoyu1,Chen Lingxiao1,Li Ximing1ORCID,Deng Danni12,Zhang Li3,Tong Yue1,Yao Wenbing1,Gao Xiangdong1,Tian Hong1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology China Pharmaceutical University Nanjing China

2. Department of Neurosurgery The First People's Hospital of Changzhou Changzhou China

3. Department of General Internal Medicine The First Affiliated Hospital of Xinjiang Medical University Urumqi China

Abstract

AbstractPersonalized neoantigen therapy has shown long‐term and stable efficacy in specific patient populations. However, not all patients have sufficient levels of neoantigens for treatment. Although somatic mutations are commonly found in tumours, a significant portion of these mutations do not trigger an immune response. Patients with low mutation burdens continue to exhibit unresponsiveness to this treatment. We propose a design paradigm for neoantigen vaccines by utilizing the highly immunogenic unnatural amino acid p‐nitrophenylalanine (pNO2Phe) for sequence alteration of somatic mutations that failed to generate neoepitopes. This enhances the immunogenicity of the mutations and transforms it into a suitable candidate for immunotherapy. The nitrated altered epitope vaccines designed according to this paradigm is capable of activating circulating CD8+ T cells and inducing immune cross‐reactivity against autologous mutated epitopes in different MHC backgrounds (H‐2Kb, H‐2Kd, and human HLA‐A02:01), leading to the elimination of tumour cells carrying the mutation. After immunization with the altered epitopes, tumour growth was significantly inhibited. It is noteworthy that nitrated epitopes induce tumour‐infiltrating macrophages to differentiate into the M1 phenotype, surprisingly enhancing the MHC II molecule presenting pathway of macrophages. Nitrated epitope‐treated macrophages have the potential to cross‐activate CD4+ and CD8+ T cells, which may explain why pNO2Phe can enhance the immunogenicity of epitopes. Meanwhile, the immunosuppressive microenvironment of the tumour is altered due to the activation of macrophages. The nitrated neoantigen vaccine strategy enables the design of vaccines targeting non‐immunogenic tumour mutations, expanding the pool of potential peptides for personalized and shared novel antigen therapy. This approach provides treatment opportunities for patients previously ineligible for new antigen vaccine therapy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3