Size and shape heterodonty in the early Permian synapsid Mesenosaurus efremovi

Author:

Maho Tea12ORCID,Maho Sigi1,Bevitt Joseph J.3,Reisz Robert R.12

Affiliation:

1. Department of Biology University of Toronto Mississauga Mississauga Ontario Canada

2. Dinosaur Evolution Research Center, International Center of Future Science Jilin University Changchun Jilin China

3. Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organisation Lucas Heights New South Wales Australia

Abstract

AbstractPaleozoic synapsids represent the first chapter in the evolution of this large clade that includes mammals. These fascinating terrestrial vertebrates were the first amniotes to successfully adapt to a wide range of feeding strategies, reflected by their varied dental morphologies. Evolution of the marginal dentition on the mammalian side of amniotes is characterized by strong, size and shape heterodonty, with the late Permian therapsids showing heterodonty with the presence of incisiform, caniniform, and multicuspid molariform dentition. Rarity of available specimens has previously prevented detailed studies of dental anatomy and evolution in the initial chapter of synapsid evolution, when synapsids were able to evolve dentition for insectivory, herbivory, and carnivory. Numerous teeth, jaw elements, and skulls of the hypercarnivorous varanopid Mesenosaurus efremovi have been recently discovered in the cave systems near Richards Spur, Oklahoma, permitting the first detailed investigation of the dental anatomy of a Paleozoic tetrapod using multiple approaches, including morphometric and histological analyses. As a distant stem mammal, Mesenosaurus is the first member of this large and successful clade to exhibit a type of dental heterodonty that combines size and morphological (shape) variation of the tooth crowns. Here we present the first evidence of functional differentiation in the dentition of this early synapsid, with three distinct dental regions having diverse morphologies and functions. The quality and quantity of preserved materials has allowed us to identify the orientation and curvature of the carinae (cutting edges), and the variation and distribution of the ziphodonty (serrations) along the carinae. The shape‐related heterodonty seen in this taxon may have contributed to this taxon's ability to be a successful mid‐sized predator in the taxonomically diverse community of early Permian carnivores, but may have also extended the ecological resilience of this clade of mid‐sized predators across major faunal and environmental transitions.

Funder

Natural Sciences and Engineering Research Council of Canada

Jilin University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3