Real‐time Neural Rendering of Dynamic Light Fields

Author:

Coomans Arno1ORCID,Dominci Edoardo A.1ORCID,Döring Christian2ORCID,Mueller Joerg H.3ORCID,Hladky Jozef2ORCID,Steinberger Markus34ORCID

Affiliation:

1. Huawei Technologies Switzerland

2. Huawei Technologies Germany

3. Huawei Technologies Austria

4. Huawei Technologies, Graz University of Technology Austria

Abstract

AbstractSynthesising high‐quality views of dynamic scenes via path tracing is prohibitively expensive. Although caching offline‐quality global illumination in neural networks alleviates this issue, existing neural view synthesis methods are limited to mainly static scenes, have low inference performance or do not integrate well with existing rendering paradigms. We propose a novel neural method that is able to capture a dynamic light field, renders at real‐time frame rates at 1920×1080 resolution and integrates seamlessly with Monte Carlo ray tracing frameworks. We demonstrate how a combination of spatial, temporal and a novel surface‐space encoding are each effective at capturing different kinds of spatio‐temporal signals. Together with a compact fully‐fused neural network and architectural improvements, we achieve a twenty‐fold increase in network inference speed compared to related methods at equal or better quality. Our approach is suitable for providing offline‐quality real‐time rendering in a variety of scenarios, such as free‐viewpoint video, interactive multi‐view rendering, or streaming rendering. Finally, our work can be integrated into other rendering paradigms, e.g., providing a dynamic background for interactive scenarios where the foreground is rendered with traditional methods.

Publisher

Wiley

Reference73 articles.

1. BurnsC. A. FatahalianK. MarkW. R.: A lazy object‐space shading architecture with decoupled sampling. InProc. High Performance Graphics(2010) HPG '10 pp.19–28. 3

2. BitterliB.:Rendering resources 2016.https://benedikt-bitterli.me/resources/. 7 13

3. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting

4. CaoA. JohnsonJ.: Hexplane: A fast representation for dynamic scenes. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(2023) pp.130–141. 10

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3