Population genetic structure and demographic history reconstruction of introduced flathead catfish (Pylodictis olivaris) in two US Mid‐Atlantic rivers

Author:

Waraniak Justin M.1ORCID,Eackles Michael S.2,Keagy Jason3,Smith Geoffrey D.4,Schall Megan5,Stark Sydney1,White Shannon L.2,Kazyak David C.2,Wagner Tyler6

Affiliation:

1. Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management The Pennsylvania State University University Park Pennsylvania USA

2. U.S. Geological Survey Eastern Ecological Science Center Kearneysville West Virginia USA

3. Department of Ecosystem Science and Management The Pennsylvania State University University Park Pennsylvania USA

4. Pennsylvania Fish and Boat Commission Bellefonte Pennsylvania USA

5. Pennsylvania State University, Biological Services Hazleton Pennsylvania USA

6. U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractPopulation genetic analysis of invasive populations can provide valuable insights into the source of introductions, pathways for expansion, and their demographic histories. Flathead catfish (Pylodictis olivaris) are a prolific invasive species with high fecundity, long‐distance dispersal, and piscivorous feeding habits that can lead to declines in native fish populations. In this study, we analyse the genetics of invasive P. olivaris in the Mid‐Atlantic region to assess their connectivity and attempt to reconstruct the history of introduced populations. Based on an assessment across 13 microsatellite loci, P. olivaris from the Susquehanna River system (N = 537), Schuylkill River (N = 33), and Delaware River (N = 1) have low genetic diversity (global Hobs = 0.504), although we detected no evidence of substantial inbreeding (FIS = −0.083 to 0.022). P. olivaris from these different river systems were genetically distinct, suggesting separate introductions. However, population structure was much weaker within each river system and exhibited a pattern of high connectivity, with some evidence of isolation by distance. P. olivaris from the Susquehanna and Schuylkill rivers showed evidence for recent genetic bottlenecks, and demographic models were consistent with historical records, which suggest that populations were established by recent founder events consisting of a small number of individuals. Our results show the risk posed by small introductions of P. olivaris, which can spread widely once a population is established, and highlight the importance of prevention and sensitive early detection methods to prevent the spread of P. olivaris in the future.

Funder

U.S. Geological Survey

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3