Senolytic treatment reduces oxidative protein stress in an aging male murine model of post‐traumatic osteoarthritis

Author:

Chin Alexander F.1ORCID,Han Jin1ORCID,Clement Cristina C.2,Choi Younghwan1,Zhang Hong1,Browne Maria1,Jeon Ok Hee13,Elisseeff Jennifer H.14ORCID

Affiliation:

1. Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA

2. Department of Radiation Oncology Englander Institute for Precision Medicine, Weill Cornell Medicine New York New York USA

3. Department of Biomedical Sciences Korea University College of Medicine Seoul Republic of Korea

4. Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine Baltimore Maryland USA

Abstract

AbstractSenolytic drugs are designed to selectively clear senescent cells (SnCs) that accumulate with injury or aging. In a mouse model of osteoarthritis (OA), senolysis yields a pro‐regenerative response, but the therapeutic benefit is reduced in aged mice. Increased oxidative stress is a hallmark of advanced age. Therefore, here we investigate whether senolytic treatment differentially affects joint oxidative load in young and aged animals. We find that senolysis by a p53/MDM2 interaction inhibitor, UBX0101, reduces protein oxidative modification in the aged arthritic knee joint. Mass spectrometry coupled with protein interaction network analysis and biophysical stability prediction of extracted joint proteins revealed divergent responses to senolysis between young and aged animals, broadly suggesting that knee regeneration and cellular stress programs are contrarily poised to respond as a function of age. These opposing responses include differing signatures of protein‐by‐protein oxidative modification and abundance change, disparate quantitative trends in modified protein network centrality, and contrasting patterns of oxidation‐induced folding free energy perturbation between young and old. We develop a composite sensitivity score to identify specific key proteins in the proteomes of aged osteoarthritic joints, thereby nominating prospective therapeutic targets to complement senolytics.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3