White matter fibre density in the brain's inhibitory control network is associated with falling in low activity older adults

Author:

Simon Colin1,Bolton David A. E.2,Meaney James F.3,Kenny Rose Anne456,Simon Vivienne A.1,De Looze Céline45,Knight Silvin57,Ruddy Kathy L.18ORCID

Affiliation:

1. Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin Ireland

2. Department of Kinesiology and Health Science Utah State University Logan Utah USA

3. Centre for Advanced Medical Imaging (CAMI) St James's Hospital Dublin Ireland

4. The Irish Longitudinal Study on Ageing (TILDA) Trinity College Dublin Dublin Ireland

5. Discipline of Medical Gerontology, School of Medicine Trinity College Dublin Dublin Ireland

6. Mercer's Institute for Successful Ageing (MISA) St James's Hospital Dublin Ireland

7. Global Brain Health Institute (GBHI) Trinity College Dublin Dublin Ireland

8. School of Psychology Queen's University Belfast Belfast UK

Abstract

AbstractRecent research has indicated that the relationship between age‐related cognitive decline and falling may be mediated by the individual's capacity to quickly cancel or inhibit a motor response. This longitudinal investigation demonstrates that higher white matter fibre density in the motor inhibition network paired with low physical activity was associated with falling in elderly participants. We measured the density of white matter fibre tracts connecting key nodes in the inhibitory control network in a large sample (n = 414) of older adults. We modelled their self‐reported frequency of falling over a 4‐year period with white matter fibre density in pathways corresponding to the direct and hyperdirect cortical–subcortical loops implicated in the inhibitory control network. Only connectivity between right inferior frontal gyrus and right subthalamic nucleus was associated with falling as measured cross‐sectionally. The connectivity was not, however, predictive of future falling when measured 2 and 4 years later. Higher white matter fibre density was associated with falling, but only in combination with low levels of physical activity. No such relationship existed for selected control brain regions that are not implicated in the inhibitory control network. Albeit statistically robust, the direction of this effect was counterintuitive (more dense connectivity associated with falling) and warrants further longitudinal investigation into whether white matter fibre density changes over time in a manner correlated with falling, and mediated by physical activity.

Funder

Health Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3