Complete genome sequence and potential pathogenic assessment of Flavobacterium plurextorumRSG‐18 isolated from the gut of Schlegel's black rockfish, Sebastes schlegelii

Author:

Lee Jisol1,Cha In‐Tae2,Lee Ki‐Eun2,Son Youn Kyoung2,Cho Seoae3,Seol Donghyeok14ORCID

Affiliation:

1. Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences Seoul National University Seoul South Korea

2. Microorganism Resources Division National Institute of Biological Resources Incheon South Korea

3. eGnome, Inc. Seoul South Korea

4. Department of Surgery Seoul National University Bundang Hospital Seongnam South Korea

Abstract

AbstractFlavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete‐infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG‐18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG‐18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein‐coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG‐18. In the SEED classification, RSG‐18 was found to have 36 genes categorized in ‘Virulence, Disease and Defense’. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan‐genomic analysis, core genes consist of genes linked to phages, integrases and matrix‐tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG‐18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.

Funder

National Institute of Biological Resources

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3