A CRISPR‐based strategy for targeted sequencing in biodiversity science

Author:

Littleford‐Colquhoun Bethan12ORCID,Kartzinel Tyler R.12ORCID

Affiliation:

1. Department of Ecology, Evolution, and Organismal Biology Brown University Providence Rhode Island USA

2. Institute at Brown for Environment and Society Brown University Providence Rhode Island USA

Abstract

AbstractMany applications in molecular ecology require the ability to match specific DNA sequences from single‐ or mixed‐species samples with a diagnostic reference library. Widely used methods for DNA barcoding and metabarcoding employ PCR and amplicon sequencing to identify taxa based on target sequences, but the target‐specific enrichment capabilities of CRISPR‐Cas systems may offer advantages in some applications. We identified 54,837 CRISPR‐Cas guide RNAs that may be useful for enriching chloroplast DNA across phylogenetically diverse plant species. We tested a subset of 17 guide RNAs in vitro to enrich plant DNA strands ranging in size from diagnostic DNA barcodes of 1,428 bp to entire chloroplast genomes of 121,284 bp. We used an Oxford Nanopore sequencer to evaluate sequencing success based on both single‐ and mixed‐species samples, which yielded mean chloroplast sequence lengths of 2,530–11,367 bp, depending on the experiment. In comparison to mixed‐species experiments, single‐species experiments yielded more on‐target sequence reads and greater mean pairwise identity between contigs and the plant species' reference genomes. But nevertheless, these mixed‐species experiments yielded sufficient data to provide ≥48‐fold increase in sequence length and better estimates of relative abundance for a commercially prepared mixture of plant species compared to DNA metabarcoding based on the chloroplast trnL‐P6 marker. Prior work developed CRISPR‐based enrichment protocols for long‐read sequencing and our experiments pioneered its use for plant DNA barcoding and chloroplast assemblies that may have advantages over workflows that require PCR and short‐read sequencing. Future work would benefit from continuing to develop in vitro and in silico methods for CRISPR‐based analyses of mixed‐species samples, especially when the appropriate reference genomes for contig assembly cannot be known a priori.

Funder

National Science Foundation

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

Reference72 articles.

1. Rapid CRISPR‐Cas13a genetic identification enables new opportunities for listed Chinook salmon management;Baerwald M. R.;Molecular Ecology Resources,2023

2. CRISPR–Cas12-based detection of SARS-CoV-2

3. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms

4. A DNA barcode for land plants

5. Environmental metabarcodes for insects:in silicoPCR reveals potential for taxonomic bias

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3