Predicting gully formation: An approach for assessing susceptibility and future risk

Author:

Goli Mokhtari Leila1ORCID,Baghaei Nejad Nadiya1,Beheshti Ali1

Affiliation:

1. Department of Climatology and Geomorphology Faculty of Geography and Environmental Science, Hakim Sabzevari University Sabzevar Iran

Abstract

AbstractGully erosion is a significant natural hazard and a form of soil erosion. This research aims to predict gully formation in the Kalshour basin, Sabzevar, Iran. Employing the Information Gain Ratio (IGR) index, we identified 13 key factors out of 22 for modeling, with elevation emerging as the most influential factor in gully formation. The study evaluated the performance of individual machine learning algorithms and ensemble algorithms, including the Functional Tree (FT) as the main classifier, Bagging (Bagg), AdaBoost (Ada), Rotation Forest (RoF), and Random Subspace (RSS). Using a data set of 400 gully and non‐gully points obtained through field investigations (70% for training and 30% for testing), the RoF model achieved an area under the curev (AUC) value of 0.99, indicating its high predictive ability for gully‐susceptible areas. Other algorithms also performed well (Ada: 0.90, FT: 0.92, RSS: 0.94, Bagg: 0.95). However, the RoF algorithm with the functional tree as the main classifier (RoF_FT) demonstrated the highest ability in gully classification and susceptibility mapping, enhancing the functional tree's performance. In addition to AUC, the RoF_FT model achieved an F1 score of 0.89 and an MCC of 0.78 on the validation set, indicating a high balance between precision and recall, and a strong correlation between predicted and actual classes, respectively. Similarly, other models showed robust performance with high F1 scores and MCC values, but the RoF_FT model consistently outperformed them, underscoring its robustness and reliability. The resulting gully erosion‐susceptibility map can be valuable for decision‐makers and local managers in soil conservation and minimizing damages. Implementing proactive measures based on these findings can contribute to sustainable land management practices in the Kalshour basin.Recommendations Gully erosion threat: Gully erosion poses a significant threat to soil, with far‐reaching environmental consequences. Predictive modeling: This research focuses on predicting gully formation in the Kalshour basin, Sabzevar, Iran, using advanced machine learning algorithms. Key findings for decision‐makers: The study evaluates the performance of various machine learning algorithms and ensemble algorithms, with the Functional Tree serving as the main classifier. This not only enhances our ability to predict gully formation but also provides a valuable tool for decision‐makers and local managers in soil conservation. Impact on sustainable land management: By offering a gully erosion‐susceptibility map, the research empowers decision‐makers to implement proactive measures, minimizing damage and contributing to sustainable land management practices. Interdisciplinary approach: The study's combination of geospatial analysis, machine learning, and soil conservation aligns with the journal's mission to advance understanding in environmental modeling.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3