A proposal for cut marks classification using machine learning: Serrated vs. non‐serrated, single vs. double‐beveled knives

Author:

Steiger Giada Sciâdi1ORCID,Borrini Matteo1

Affiliation:

1. School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK

Abstract

AbstractIn tool mark identification, there is still a lack of characteristics and methodologies standardization used to analyze and describe sharp force trauma marks on skeletal remains. This study presents a classification method for cut marks on human bones, providing an applicable methodology for their examination and the relevant terminology for describing cases of sharp force trauma. A total of 350 cut marks were produced by stabbing pig ribs (Sus scrofa) with seven knives. The samples were analyzed under a stereomicroscope with a tangential light source. Through the analysis of cut marks, eleven traits were identified as significantly associated with the type of knife used. These traits included the general morphology of the kerf shape, the entrance and exit cross‐profile shapes, the location of the rising on the entrance and exit cross‐profile, the presence or absence of feathering, the presence or absence of shards and the location and the general morphology of the mounding. Binary logistic regression models were later trained and tested using nine out of the eleven traits. The first model categorized the cut mark as either produced by a serrated or non‐serrated blade, while the second, as either produced by a single‐ or double‐beveled blade. Classification scores of those models ranged between 63%–85% for the serration class and 63%–89% for the blade bevel class. This study proposes a new set of traits and the use of machine learning models to standardize and facilitate the analysis of stab wounds.

Publisher

Wiley

Reference43 articles.

1. Tool Mark Determination in Cartilage of Stabbing Victim

2. Sharp force trauma: the effects of blade damage on cut mark characteristics;Ofele AS;SciFed J Forensics,2018

3. TennickCJ.The identification and classification of sharp force trauma on bone using low power microscopy [dissertation]. Preston England: University of Central Lancashire2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3