Temporal involvement of phosphatidylinositol 4‐phosphate 5‐kinase γ in differentiation of Z‐bands and myofilament bundles as well as intercalated discs in mouse heart at mid‐gestation

Author:

Ratchatasunthorn A.1,Sakagami H.2,Kondo H.13,Hipkaeo W.1ORCID,Chomphoo S.1ORCID

Affiliation:

1. Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand

2. Department of Anatomy, School of Medicine Kitasato University Sagamihara Japan

3. Department of Anatomy, Graduate School of Medicine Tohoku University Sendai Japan

Abstract

AbstractConsidering the occurrence of serious heart failure in a gene knockout mouse of PIP5Kγ and in congenital abnormal cases in humans in which the gene was defective as reported by others, the present study attempted to localize PIP5Kγ in the heart during prenatal stages. It was done on the basis of the supposition that phenotypes caused by gene mutation of a given molecule are owed to the functional deterioration of selective cellular sites normally expressing it at significantly higher levels in wild mice. PIP5Kγ‐immunoreactivity was the highest in the heart at E10 in contrast to almost non‐significant levels of the immunoreactivity in surrounding organs and tissues such as liver. The immunoreactivity gradually weakened in the heart with the prenatal age, and it was at non‐significant levels at newborn and postnatal stages. Six patterns in localization of distinct immunoreactivity for PIP5Kγ were recognized in cardiomyocytes: (1) its localization on the plasma membranes and subjacent cytoplasm without association with short myofibrils and (2) its localization on them as well as short myofibrils in association with them in cardiomyocytes of early differentiation at E10; (3) its spot‐like localization along long myofibrils in cardiomyocytes of advanced differentiation at E10; (4) rare occurrences of such spot‐like localization along long myofibrils in cardiomyocytes of advanced differentiation at E14; (5) its localization at Z‐bands of long myofibrils; and (6) its localization at intercellular junctions including the intercalated discs in cardiomyocytes of advanced differentiation at E10 and E14, especially dominant at the latter stage. No distinct localization of PIP5Kγ‐immunoreactivity of any patterns was seen in the heart at E18 and P1D. The present finding suggests that sites of PIP5Kγ‐appearance and probably of its high activity in cardiomyocytes are shifted from the plasma membranes through short myofibrils subjacent to the plasma membranes and long myofibrils, to Z‐bands as well as to the intercalated discs during the mid‐term gestation. It is further suggested that PIP5Kγ is involved in the differentiation of myofibrils as well as intercellular junctions including the intercalated discs at later stages of the mid‐term gestation. Failures in its involvement in the differentiation of these structural components are thus likely to cause the mid‐term gestation lethality of the mutant mice for PIP5Kγ.

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3