3D Generative Model Latent Disentanglement via Local Eigenprojection

Author:

Foti Simone1ORCID,Koo Bongjin12,Stoyanov Danail1,Clarkson Matthew J.1

Affiliation:

1. University College London London UK

2. University of California, Santa Barbara Santa Barbara USA

Abstract

AbstractDesigning realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural‐network‐based generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentanglement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled (LED) models not only offer improved disentanglement with respect to the state‐of‐the‐art, but also maintain good generation capabilities with training times comparable to the vanilla implementations of the models. Our code and pre‐trained models are available at github.com/simofoti/LocalEigenprojDisentangled.

Funder

Wellcome Trust

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference88 articles.

1. [AATDJ23] Aumentado‐ArmstrongT. TsogkasS. DickinsonS. JepsonA.:Disentangling geometric deformation spaces in generative latent shape models. InInternational Journal of Computer Vision(2023).

2. [AATJD19] Aumentado‐ArmstrongT. TsogkasS. JepsonA. DickinsonS.:Geometric disentanglement for generative latent shape models. InProceedings of the IEEE/CVF International Conference on Computer Vision.IEEE Seoul Korea (South)(2019) pp. 8181–8190.

3. [ABWB19] AbrevayaV. F. BoukhaymaA. WuhrerS. BoyerE.:A Decoupled 3D Facial Shape Model by Adversarial Training. In2019 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE Seoul Korea (South)(Oct2019) pp. 9418–9427.

4. [ACB17] ArjovskyM. ChintalaS. BottouL.:Wasserstein generative adversarial networks. InProceedings of the 34th International Conference on Machine Learning.PrecupD. TehY. W. (Eds.) vol.70ofProceedings of Machine Learning Research PMLR Sydney Australia(Aug2017) pp. 214–223.

5. [ADMG18] AchlioptasP. DiamantiO. MitliagkasI. GuibasL.:Learning representations and generative models for 3d point clouds. InProceedings of the 35th International Conference on Machine Learning.DyJ. KrauseA. (Eds.) vol.80ofProceedings of Machine Learning Research PMLR Stockholm Sweden(July2018) pp. 40–49.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3