Impacts of willow and miscanthus bioenergy buffers on biogeochemical N removal processes along the soil–groundwater continuum

Author:

Ferrarini Andrea1,Fornasier Flavio2,Serra Paolo1,Ferrari Federico3,Trevisan Marco4,Amaducci Stefano1

Affiliation:

1. Department of Sustainable Crop Production Università Cattolica del Sacro Cuore via Emilia Parmense 84 Piacenza 29122 Italy

2. Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria Via Trieste 23 34170 Gorizia Italy

3. Aeiforia srl Via Gramsci 22 43036 Fidenza Italy

4. Institute of Agricultural and Environmental Chemistry Università Cattolica del Sacro Cuore via Emilia Parmense 84 Piacenza 29122 Italy

Abstract

AbstractIn this article, the belowground and aboveground biomass production in bioenergy buffers and biogeochemical N removal processes along the soil–groundwater continuum was assessed. In a sandy loam soil with shallow groundwater, bioenergy buffers of miscanthus and willow (5 and 10 m wide) were planted along a ditch of an agricultural field (AF) located in the Po valley (Italy). Mineral N forms and dissolved organic C (DOC) were monitored monthly over an 18‐month period in groundwater before and after the bioenergy buffers. Soil samples were measured for inorganic N, DOC, microbial biomass C (MBC) and N (MBN), and potential nitrate reductase activity (NRA). The results indicated that bioenergy buffers are able to efficiently remove from groundwater the incoming NO3‐N (62% – 5 m and 80% – 10 m). NO3‐N removal rate was higher when nitrate input from AF increased due to N fertilization. Willow performed better than miscanthus in terms of biomass production (17 Mg DM ha−1 yr−1), fine root biomass (5.3 Mg ha−1) and N removal via harvesting (73 kg N ha−1). The negative nonlinear relationship found between NO3‐N and DOC along the soil–groundwater continuum from AF to bioenergy buffers indicates that DOC:NO3‐N ratio is an important controlling factor for promoting denitrification in bioenergy buffers. Bioenergy buffers promoted soil microbial functioning as they stimulated plant–microbial linkages by increasing the easily available C sources for microorganisms (as DOC). First, willow and miscanthus promoted high rates of biological removal of nitrate (NRA) along the soil profile. Second, rhizosphere processes activated the soil microbial community leading to significant increases in MBC and microbial N immobilization. Herbaceous and woody bioenergy crops have been confirmed as providing good environmental performances when cultivated as bioenergy buffers by mitigating the disservices of agricultural activities such as groundwater N pollution.

Funder

Italian Ministry of Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3