In vitro compatibility of Beauveria bassiana strain ATCC 74040 with copper fungicides

Author:

Celar Franci A.1ORCID,Kos Katarina1ORCID

Affiliation:

1. Biotechnical Faculty Agronomy Department University of Ljubljana Ljubljana Slovenia

Abstract

AbstractCopper fungicides and mycoinsecticides based on entomopathogenic fungi Beauveria spp. are the most common pesticides used in organic crop production systems. The in vitro effects of the copper fungicides copper oxide, copper hydroxide, copper oxychloride, copper sulphate, dicopper chloride trihydroxide and tribasic copper sulphate were investigated for mycelial growth, sporulation and conidial germination of the ATCC 74040 commercial strain of Beauveria bassiana. Mycelial growth was evaluated on potato dextrose agar plates with 100%, 75%, 50%, 25%, 12.5%, 6.25% and 0% of the recommended application rates of each fungicide at 15 and 25°C. Sporulation and conidial germination were determined at the recommended field doses of each fungicide at 25°C. All copper fungicides had fungistatic or fungicidal effects on B. bassiana that varied according to the dose. Only in two cases, copper oxide at 15°C and copper hydroxide at 25°C, at the lowest concentration of 6.5%, was mycelial growth not statistically significantly inhibited. Inhibition of mycelial growth depended both on the fungicide and its concentration, and partly on temperature. Both sporulation and conidial germination of B. bassiana were significantly inhibited by all fungicides. All fungicides inhibited the sporulation in a similar way (99.8%–100%). With the exception of copper oxychloride (inhibition, 13.6%), the other fungicides showed high detrimental effects on conidial germination (inhibition, 91.7%–100%). The fungus was strongly affected by some fungicides even at the lowest doses. The biological index used for the B. bassiana with copper fungicides ranged from 0.6 (copper sulphate) to 18.1 (copper oxychloride). Therefore, the tested fungicides were classified into the upper half of the highly toxic (T) category and are considered incompatible with the entomopathogenic fungus B. bassiana strain ATCC 74040 under in vivo experimental conditions. These results need to be further verified in vitro under both greenhouse and open‐field conditions.

Funder

Administration of the Republic Slovenia for food safety, veterinary and plant protection, Ministry of Agriculture, Forestry and Food

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3