Affiliation:
1. SKEMA Business School ‐ Lille Campus, 59777 Lille France
2. Université Côte d'Azur Nice France
3. Lancaster University Lancaster UK
Abstract
We develop a non‐parametric technique framework for estimating firm‐level Total Factor Productivity (TFP). Our paper has two major novelties: first, we propose a modelling of productivity with both firm‐idiosyncratic factors and aggregate shocks. Second, we apply the Bayesian Markov Chain Monte Carlo (MCMC) technique that offers a numerical integration of productivity outside the posterior overcoming the restrictive assumptions about the relationship between productivity and variable production inputs. We implement our methodology in a group of 4,286 manufacturing firms from France, Germany, Italy, and the UK (2001–14). The results show that: (i) aggregate shocks matter for firm TFP evolution. The global financial crisis of 2008 caused severe, albeit short, adverse effects on TFP; (ii) there is substantial heterogeneity across countries in the way firms react to changes in R&D and taxation. German and UK firms are more sensitive to fiscal changes than R&D, while the opposite is true for Italian firms. R&D and taxation effects are symmetrical for French firms; (iii) the UK productivity handicap continues for years after the financial crisis; and (iv) there are substantial knowledge spillovers among German and Italian firms.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献