Human phenotype caused by biallelic KDM4B frameshift variant

Author:

Takada Sanami1,Silva Sebastián23ORCID,Zamorano Ivonne4ORCID,Pérez Andrea5,Iwabuchi Chisato1,Miyake Noriko1ORCID

Affiliation:

1. Department of Human Genetics, Research Institute National Center for Global Health and Medicine Tokyo Japan

2. Child Neurology Service Hospital de Puerto Montt Puerto Montt Chile

3. Escuela de Medicina Universidad San Sebastián Puerto Montt Chile

4. Adult Neurology Service Hospital de Puerto Montt Puerto Montt Chile

5. Radiology Service Hospital de Puerto Montt Puerto Montt Chile

Abstract

AbstractKDM4B (MIM*609765, NM_015015.3, formerly JMJD2B) encodes a histone demethylase and regulates gene expression via demethylation, mainly of H3K9 tri‐methylation. Heterozygous KDM4B loss‐of‐function variants cause autosomal dominant intellectual developmental disorder 65 (MIM#619320), which is characterized by global developmental delay, intellectual disability, language and gross motor delays, structural brain anomalies, characteristic facial features, and clinodactyly. Although the majority of reported patients have de novo pathogenic variants, some patients inherit pathogenic variants from affected parents. To our knowledge, only 23 patients with heterozygous KDM4B variants have been reported to date, and there are no reports of patients with biallelic KDM4B pathogenic variants. Herein, we report a female patient with a biallelic KDM4B frameshift variant (NM_015015.3: c.1384_1394delinsGGG, p.(Leu462Glyfs*43)) located at exon 12 of 23 protein‐coding exons, which is thought to be subject to nonsense‐mediated mRNA decay and no protein production. She presented developmental and language delays and a hypotonic and characteristic face. The patient's phenotype was more obvious than that of her mother, who is heterozygous for the same variant. Although declining birth rate (embryonic lethality in male mice) in homozygous knockout mice has been demonstrated, our report suggests that homozygous KDM4B frameshift variants can be viable in humans at least female.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Genetics (clinical),Genetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3