Small rodent population cycles and plants – after 70 years, where do we go?

Author:

Soininen Eeva M.1ORCID,Neby Magne2ORCID

Affiliation:

1. Department of Arctic and Marine Biology UiT‐The Arctic University of Norway Postboks 6050 Langnes Tromsø 9037 Norway

2. Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Høyvangvegen 40 Ridabu 2322 Norway

Abstract

ABSTRACTSmall rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long‐lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant–herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant–rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore‐relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent–plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant–herbivore interactions have – or do not have – plausible effects on rodent population dynamics.

Funder

Høgskolen i Innlandet

Norges Forskningsråd

Universitetet i Tromsø

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3