Affiliation:
1. Department of Pharmacology, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
2. Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
Abstract
Abstract
Objectives
Tumour cells produce factors such as interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF) that suppress the function of immune cells or induce apoptosis of immune cells. One of the most important goals of tumour immunotherapy is to antagonize this suppression on immune cells. Ganoderma lucidum polysaccharides (Gl-PS) may have this potential. The purpose of this study was to determine the antagonistic effects of Gl-PS on the suppression induced by B16F10 melanoma cell culture supernatant (B16F10-CS) on lymphocytes.
Methods
Gl-PS was used on lymphocytes incubated with B16F10-CS. Enzyme-linked immunosorbent assay was used to determine the levels of IL-10, TGF-β1 and VEGF in B16F10-CS. The MTT assay was used to determine the proliferation of lymphocytes. Immunocytochemistry and Western blot assay were used to determine perforin and granzyme B production in lymphocytes.
Key findings
There were elevated levels of IL-10, TGF-β1 and VEGF in B16F10-CS. The lymphocyte proliferation, and perforin and granzyme B production in lymphocytes after induction with phytohemagglutinin, as well as lymphocyte proliferation in the mixed lymphocyte reaction, were suppressed by B16F10-CS. This suppression was fully or partially antagonized by Gl-PS.
Conclusions
B16F10-CS suppressed lymphocyte proliferation and perforin and granzyme B production in lymphocytes after induction with phytohemagglutinin, as well as lymphocyte proliferation in the mixed lymphocyte reaction. This suppression may be associated with elevated levels of immunosuppressive IL-10, TGF-β1 and VEGF in B16F10-CS. Gl-PS had antagonistic effects on the immunosuppression induced by B16F10-CS, suggesting the potential for Gl-PS in cancer immunotherapy.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献