Exercise enhancement by RGS14 disruption is mediated by brown adipose tissue

Author:

Vatner Dorothy E.1,Oydanich Marko2,Zhang Jie2,Campbell Sara C.3,Vatner Stephen F.2ORCID

Affiliation:

1. Department of Medicine Rutgers, New Jersey Medical School Newark New Jersey USA

2. Department of Cell Biology and Molecular Medicine Rutgers, New Jersey Medical School Newark New Jersey USA

3. Department of Kinesiology and Health Rutgers University New Brunswick New Brunswick New Jersey USA

Abstract

AbstractEnhanced exercise capacity is not only a feature of healthful aging, but also a therapy for aging patients and patients with cardiovascular disease. Disruption of the Regulator of G Protein Signaling 14 (RGS14) in mice extends healthful lifespan, mediated by increased brown adipose tissue (BAT). Accordingly, we determined whether RGS14 knockout (KO) mice exhibit enhanced exercise capacity and the role of BAT in mediating exercise capacity. Exercise was performed on a treadmill and exercise capacity was assessed by maximal running distance and work to exhaustion. Exercise capacity was measured in RGS14 KO mice and their wild types (WT), and also in WT mice with BAT transplantation from RGS14 KO mice or from other WT mice. RGS14 KO mice demonstrated 160 ± 9% increased maximal running distance and 154 ± 6% increased work to exhaustion, compared to WT mice. RGS14 KO BAT transplantation to WT mice, resulted in a reversal of phenotype, with the WT mice receiving the BAT transplant from RGS14 KO mice demonstrating 151 ± 5% increased maximal running distance and 158 ± 7% increased work to exhaustion, at three days after BAT transplantation, compared to RGS14 KO donors. BAT transplantation from WT to WT mice also resulted in increased exercise performance, but not at 3 days, but only at 8 weeks after transplantation. The BAT induced enhanced exercise capacity was mediated by (1) mitochondrial biogenesis and SIRT3; (2) antioxidant defense and the MEK/ERK pathway, and increased hindlimb perfusion. Thus, BAT mediates enhanced exercise capacity, a mechanism more powerful with RGS14 disruption.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3