Inferring time of infection from field data using dynamic models of antibody decay

Author:

Borremans Benny123ORCID,Mummah Riley O.1ORCID,Guglielmino Angela H.1,Galloway Renee L.4ORCID,Hens Niel25ORCID,Prager K. C.1ORCID,Lloyd‐Smith James O.1ORCID

Affiliation:

1. Ecology and Evolutionary Biology Department University of California Los Angeles Los Angeles California USA

2. I‐BioStat, Data Science Institute Hasselt University Hasselt Belgium

3. Evolutionary Ecology Group University of Antwerp Antwerpen Belgium

4. Centers for Disease Control and Prevention Atlanta Georgia USA

5. Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute University of Antwerp Antwerpen Belgium

Abstract

Abstract Studies of infectious disease ecology would benefit greatly from knowing when individuals were infected, but estimating this time of infection can be challenging, especially in wildlife. Time of infection can be estimated from various types of data, with antibody‐level data being one of the most promising sources of information. The use of antibody levels to back‐calculate infection time requires the development of a host‐pathogen system‐specific model of antibody dynamics, and a leading challenge in such quantitative serology approaches is how to model antibody dynamics in the absence of experimental infection data. We present a way to model antibody dynamics in a Bayesian framework that facilitates the incorporation of all available information about potential infection times and apply the model to estimate infection times of Channel Island foxes infected with Leptospira interrogans. Using simulated data, we show that the approach works well across a broad range of parameter settings and can lead to major improvements in infection time estimates that depend on system characteristics such as antibody decay rate and variation in peak antibody levels after exposure. When applied to field data we saw reductions up to 83% in the window of possible infection times. The method substantially simplifies the challenge of modelling antibody dynamics in the absence of individuals with known infection times, opens up new opportunities in wildlife disease ecology and can even be applied to cross‐sectional data once the model is trained.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Strategic Environmental Research and Development Program

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3