MoonShine: A software‐hardware system for simulating moonlight ground illuminance and re‐creating artificial moonlight cycles in a laboratory environment

Author:

Poon Lok1ORCID,Jenks Ian T.12,Crampton W. G. R.1ORCID

Affiliation:

1. Department of Biology University of Central Florida Orlando Florida USA

2. Geosonics Inc Davie Florida USA

Abstract

Abstract Moonlight exerts profound ecological, behavioural and physiological effects on animals. However, lunar cycles are characterised by complex changes in the illuminance and timing of illumination, making it challenging to re‐create and manipulate moonlight cycles in the laboratory using artificial lights. As a result, ecological experiments on the effects of moonlight cycles are uncommon, and existing studies often oversimplify the re‐creation of moonlight. This limitation extends to experimental studies of the effects of light pollution on nocturnal animals, which often fail to adequately represent natural nocturnal light. To address the lack of open‐source solutions for re‐creating and manipulating moonlight cycles, we developed the software‐hardware system MoonShine. This has two components: (1) MoonShineR, an R package with additional R scripts, which predicts moonlight ground illuminance (in lux) at defined intervals, for a specified location and time range; (2) MoonShineP, a Python program running on a Raspberry Pi computer, which uses the illuminance values from MoonShineR to gradually dim and brighten a diffused array of individually addressable LEDs, allowing realistic natural light regimes to be re‐created in a laboratory environment. MoonShine includes multiple features to re‐create and manipulate light cycles. It supports colour‐shifting of the LED light (by adjustment of RGBW intensity ratios) to approximate the spectrum of natural moonlight, and to mimic habitat‐specific conditions or certain types of light pollution. We tested the accuracy of MoonShineR's moonlight illuminance predictions by comparison to field radiometer measurements at equatorial and temperate latitude sites. We demonstrated the accuracy of MoonShineP's moonlight re‐creation, by comparing its measured LED illuminances to the intended values and its measured LED spectrum against natural moonlight. MoonShine allows researchers to re‐create a range of natural nocturnal lighting scenarios in the laboratory. It can be used to re‐create full natural moonlight cycles with a relatively realistic spectral composition, generate manipulated moonlight schedules, or simulate light pollution. Furthermore, the moonlight illuminance predicted by MoonShineR is useful for field ecologists who require moonlight as a quantitative model predictor. Finally, to provide laboratory‐housed animals with full diurnal light cycles, MoonShine allows researchers to re‐create natural twilight and sunlight regimes.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3