Spatio‐temporal data integration for species distribution modelling in R‐INLA

Author:

Seaton Fiona M.1ORCID,Jarvis Susan G.1ORCID,Henrys Peter A.1ORCID

Affiliation:

1. UK Centre for Ecology & Hydrology, Lancaster Environment Centre Lancaster UK

Abstract

Abstract Species distribution modelling is a highly used tool for understanding and predicting biodiversity change, and recent work has emphasised the importance of understanding how species distributions change over both time and space. Spatio‐temporal models require large amounts of data spread over time and space, and as such are clear candidates to benefit from model‐based integration of different data sources. However, spatio‐temporal models are highly computationally intensive and integrating different data sources can make this approach even more unfeasible to ecologists. Here we demonstrate how the R‐INLA methodology can be used for model‐based data integration for spatio‐temporally explicit modelling of species distribution change. We demonstrate that this method can be applied to both point and areal data with two contrasting case studies, one using the SPDE approach for modelling spatio‐temporal change in the Gatekeeper butterfly (Pyronia tithonus) across Great Britain and the second using a spatio‐temporal areal model to describe change in caddisfly (Trichoptera) populations across the River Thames catchment. We show that in the caddisfly case study integrating together different data sources led to greater understanding of the change in abundance across the River Thames both seasonally and over 5 years of data. However, in the butterfly case study moving to a spatio‐temporal context exacerbated differences between the data sources and resulted in no greater ecological insight into change in the Gatekeeper population. Our work provides a computationally feasible framework for spatio‐temporally explicit integration of data within SDMs and demonstrates both the potential benefits and the challenges in applying this methodology to real ecological data.

Funder

Department for Environment, Food and Rural Affairs, UK Government

Natural Environment Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3