Effect of flow behavior index of CMC solutions on heat transfer and fluid flow in a cylindrical can

Author:

Dalvi‐Isfahan Mohsen1ORCID

Affiliation:

1. Department of Food Science and Technology Faculty of Agriculture, Jahrom University Jahrom Fars Iran

Abstract

AbstractThe objective of this study was to investigate the impact of the flow behavior index (n) on heat transfer and fluid flow in carboxymethyl cellulose (CMC) solutions during the thermal process within a cylindrical container. The study employed a numerical model based on the finite element method to solve the governing equations for mass, momentum, and energy conservation. Four different values of n were considered, ranging from 0.25 to 1, representing varying degrees of non‐Newtonian behavior. The results revealed that this index significantly influenced the apparent viscosity of the fluid, subsequently affecting the fluid flow patterns and heat transfer. Specifically, the n = 0.25 fluid exhibited a notably higher Grashof number (GR) and velocity compared to the n = 1 fluid. The average GR for the n = 0.25 fluid was ~2300 times larger than that of the n = 1 fluid, while the average velocity for the n = 0.25 fluid was ~37 times higher. In addition, the study identified the presence of secondary flow in the CMC solution with n = 0.25, which enhanced fluid mixing and heat transfer. Notably, the slowest heating zone for the n = 1 fluid remained fixed at the mid‐height of the can, whereas for the n = 0.25 fluid, it continuously shifted and contracted, ultimately settling at the 10% height from the bottom of the can. These findings underscore the critical importance of considering the non‐Newtonian characteristics of the fluid and convective flow during heat transfer processes in product applications.Practical applicationsThe study investigates the impact of flow behavior indices of the CMC solution on heat transfer and fluid dynamics within cylindrical containers. By examining parameters such as concentration, temperature, and heating duration, the researcher aims to optimize thermal processing for liquid food products containing thickening agents, such as sauces, soups, or dairy items. These findings significantly contribute to ensuring the safety, quality, and nutritional value of diverse liquid food products. Moreover, the study's insights may lead to energy savings and reduced environmental impact by minimizing heating time and temperature during thermal processing. In summary, this research bridges scientific understanding with practical applications, benefiting both consumers and the environment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3