Simulation and analysis of movement trajectories of fresh tea leaf particles based on CFDEDEM coupling

Author:

Zhang Xu12ORCID,Zhu Xinyu3,Yu Kai1,Wan Jiaxin1,Chen Chuanyang1

Affiliation:

1. Huzhou Vocational and Technical College college of Intelligent Manufacturing and Elevator Huzhou China

2. Huzhou Vocational and Technical College industrial intelligent automation research and development center Huzhou China

3. Huzhou Vocational and Technical College College of continuing education Huzhou China

Abstract

AbstractTo study the air‐suction separation mechanism of fresh tea leaves, this article adopts the coupling simulation method of discrete elements and computational fluid dynamics to conduct numerical simulation and experimental research on the movement of fresh tea leaves adsorbed by negative pressure air flow. In the gas–solid coupling model, three‐dimensional scanning technology is applied to establish a three‐dimensional model of fresh tea leaves with one bud and two leaves. Through the Fluent module in CFD, the negative pressure adsorption gas phase of the simulation process was established, bench tests were established, and parameters of the coupling model were optimized. Finally, the minimum error between the simulated value and the test value was 2.85% and the maximum error was 7.43%, indicating that the coupling model established had certain accuracy and could be theoretically analyzed according to the coupling model established. It is found that when the static pressure values of the adsorption surface are −120 Pa, −340 Pa, and −500 Pa respectively, the initial distance from the adsorption surface is 250–550 mm. It is found that fresh tea leaves with one bud and two leaves all fall to the pipe before adsorption, and then move to the adsorption surface. Under the same static pressure value of the adsorption surface, the initial falling distance of tea particles from the adsorption surface (250–550 mm) has a linear function relationship with the distance between the turning point and the adsorption surface. When the initial distance between falling tea particles and the adsorption surface is the same, the distance between the turning point and the adsorption surface is an exponential function when the initial position is 250–350 mm from the adsorption surface, and the distance between the turning point and the adsorption surface is a linear function when the initial position is 400–550 mm from the adsorption surface.

Funder

Department of Education of Zhejiang Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3