Differential gene expression and mitonuclear incompatibilities in fast‐ and slow‐developing interpopulation Tigriopus californicus hybrids

Author:

Healy Timothy M.1ORCID,Burton Ronald S.1ORCID

Affiliation:

1. Marine Biology Research Division, Scripps Institution of Oceanography University of California San Diego La Jolla California USA

Abstract

AbstractMitochondrial functions are intimately reliant on proteins and RNAs encoded in both the nuclear and mitochondrial genomes, leading to inter‐genomic coevolution within taxa. Hybridization can break apart coevolved mitonuclear genotypes, resulting in decreased mitochondrial performance and reduced fitness. This hybrid breakdown is an important component of outbreeding depression and early‐stage reproductive isolation. However, the mechanisms contributing to mitonuclear interactions remain poorly resolved. Here, we scored variation in developmental rate (a proxy for fitness) among reciprocal F2 interpopulation hybrids of the intertidal copepod Tigriopus californicus and used RNA sequencing to assess differences in gene expression between fast‐ and slow‐developing hybrids. In total, differences in expression associated with developmental rate were detected for 2925 genes, whereas only 135 genes were differentially expressed as a result of differences in mitochondrial genotype. Upregulated expression in fast developers was enriched for genes involved in chitin‐based cuticle development, oxidation–reduction processes, hydrogen peroxide catabolic processes and mitochondrial respiratory chain complex I. In contrast, upregulation in slow developers was enriched for DNA replication, cell division, DNA damage and DNA repair. Eighty‐four nuclear‐encoded mitochondrial genes were differentially expressed between fast‐ and slow‐developing copepods, including 12 subunits of the electron transport system (ETS) which all had higher expression in fast developers than in slow developers. Nine of these genes were subunits of ETS complex I. Our results emphasize the major roles that mitonuclear interactions within the ETS, particularly in complex I, play in hybrid breakdown, and resolve strong candidate genes for involvement in mitonuclear interactions.

Funder

National Science Foundation

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3