TailorMe: Self‐Supervised Learning of an Anatomically Constrained Volumetric Human Shape Model

Author:

Wenninger S.1ORCID,Kemper F.1ORCID,Schwanecke U.2ORCID,Botsch M.1ORCID

Affiliation:

1. TU Dortmund University, Computer Graphics Group Germany

2. RheinMain University of Applied Sciences, Computer Vision and Mixed Reality Group Wiesbaden Germany

Abstract

AbstractHuman shape spaces have been extensively studied, as they are a core element of human shape and pose inference tasks. Classic methods for creating a human shape model register a surface template mesh to a database of 3D scans and use dimensionality reduction techniques, such as Principal Component Analysis, to learn a compact representation. While these shape models enable global shape modifications by correlating anthropometric measurements with the learned subspace, they only provide limited localized shape control. We instead register a volumetric anatomical template, consisting of skeleton bones and soft tissue, to the surface scans of the CAESAR database. We further enlarge our training data to the full Cartesian product of all skeletons and all soft tissues using physically plausible volumetric deformation transfer. This data is then used to learn an anatomically constrained volumetric human shape model in a self‐supervised fashion. The resulting TailorMe model enables shape sampling, localized shape manipulation, and fast inference from given surface scans.

Publisher

Wiley

Reference46 articles.

1. 3DScanstore.https://www.3dscanstore.com/.20231 3.

2. Achenbach Jascha Brylka Robert Gietzen Thomas et al. “A Multilinear Model for Bidirectional Craniofacial Reconstruction”.Proc. of Eurographics Workshop on Visual Computing for Biology and Medicine.2018 67–763 8 9 11.

3. Allen Brett Curless Brian Popović Zoran andHertzmann Aaron. “Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis”.Proc. of the ACM SIGGRAPH/Eurographics symposium on Computer animation.2006 147–1562 8 10.

4. Alldieck Thiemo Magnor Marcus Bhatnagar Bharat Lal et al. “Learning to Reconstruct People in Clothing From a Single RGB Camera”.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).20191.

5. SCAPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3