Affiliation:
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment Beijing Normal University Beijing China
Abstract
AbstractRapid urbanization boosts the material demand of cities and leads to serious environmental problems, such as water shortage and air pollution. To achieve better governance of cities, stakeholders need to deeply understand urban material utilization. Taking 327 cities in China as examples, this study analyzes the urban material characteristics from a metabolic perspective. We investigated the spatiotemporal changes in the material base of these cities from 2000 to 2020, including material flow and material stock. We further explored the allometric growth patterns of urban material flow and material stock at different scales (e.g., individual, group, and community). Results show that cities have metabolic processes as natural organisms; they differentiate into many types and exhibit allometric growth patterns. There is a consistency of material metabolic patterns in most cities. The growth of material flows (+43%) and material stocks (+135%) was evident in all cities during 2000–2020. However, the material metabolism of Chinese cities exhibits diverse allometric growth patterns across the individual, group, and community scales. This study can provide simple but effective quantitative indicators for the investigation of urban material utilization, and can support distinct policy implications for sustainable urban material‐based planning and management.
Funder
National Key Research and Development Program of China
Subject
General Social Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献