Thickness effects on the sinterability, microstructure, and nanohardness of SiC‐based ceramics consolidated by spark plasma sintering

Author:

Sun Shi‐Kuan1ORCID,Yuan Jin‐Hao12,Guo Wei‐Ming2ORCID,Duan Xiao‐Ming3ORCID,Jia De‐Chang3ORCID,Lin Hua‐Tay2

Affiliation:

1. School of Materials Science & Hydrogen Energy Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan University Foshan China

2. School of Electromechanical Engineering Guangdong University of Technology Guangzhou China

3. School of Materials Science and Engineering Harbin Institute of Technology Harbin China

Abstract

AbstractThis study aimed to investigate the effects of the original thickness on the densification, microstructure, and nanoindentation hardness of silicon carbide (SiC) ceramics prepared by the spark plasma sintering (SPS) process. The densification of SiC ceramics with different initial thicknesses ranging from 50 to 2000 µm was investigated in combination with varying SPS sintering temperature at 1700–1900°C. The results indicated that the densification of SiC sample with the initial thickness of 50 µm was complete after sintering at 1700°C. On the contrary, when the initial thickness exceeded 50 µm, it resulted in a porous microstructure. When the initial thickness varied from 50 to 100 µm, dense SiC monolithic could be obtained after sintering at 1800°C. All the samples were fully densified after sintering at 1900°C. The predominant factors for the thickness effect were mainly derived from the unique characteristics of SPS. The hardness of SiC ceramics was measured using nanoindentation, and it was found to have a strong correlation with the initial thickness, mainly attributed to the densification status. The dense SiC product demonstrated nanoindentation hardness with high values of ∼28.0 GPa.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3