Spatiotemporal variation in the negative effect of neighbourhood crowding on stem growth

Author:

Zhang Hong‐Tu1ORCID,Ovaskainen Otso23,Chi Xiulian4,Guo Qiang1,Tang Zhiyao1ORCID

Affiliation:

1. Institute of Ecology, College of Urban and Environmental Science and Key Laboratory for Earth Surface Processes of Ministry of Education Peking University Beijing China

2. Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland

3. Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

4. State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China

Abstract

Abstract Neighbourhood interactions drive tree growth and forest ecosystem functioning. The strength of interactions depends on the climate. However, it remains unclear how plant–plant interactions are modified by environmental conditions operating both spatially and temporally, which is crucial for predicting forest dynamics under climate change and for effective forest management. In this study, we used annual growth data for 4139 stems from 2010 to 2021 across 50 permanent forest plots located at six sites in eastern China. We quantified the effect of neighbourhood crowding on the annual basal area increment. We explored how interactions among neighbouring trees vary with water availability and temperature gradients in the spatial (across sites) and temporal (across time within sites) dimensions. Our findings revealed a negative impact of neighbourhood crowding on stem basal area growth, which is size‐ and trait‐dependent at some sites. The negative effects of light competition tended to be more intense at warmer sites, supporting the stress‐gradient hypothesis (SGH) in a spatial dimension. However, the patterns of crowding effects along interannual climate anomalies are inconsistent across sites, making it difficult to predict crowding effects under the SGH framework in a temporal dimension. Synthesis: Our study demonstrated that tree interactions depend on the climate context. The climate dependence of interactions may be inconsistent between the spatial and temporal dimensions. Light competition across sites supported the SGH in the spatial dimension but not in the temporal dimension. These results further highlight the complexity of biotic interactions and the need for caution when extrapolating findings from the spatial to the temporal dimension.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3