PBPK‐led assessment of antimalarial drugs as candidates for Covid‐19: Simulating concentrations at the site of action to inform repurposing strategies

Author:

Abla Nada1ORCID,Almond Lisa M.2ORCID,Bonner Jennifer J.2ORCID,Richardson Naomi3ORCID,Wells Timothy N. C.1ORCID,Möhrle Jörg J.1ORCID

Affiliation:

1. MMV Medicines for Malaria Venture Geneva Switzerland

2. Certara UK Ltd Sheffield UK

3. Magenta Communications Ltd Abingdon UK

Abstract

AbstractThe urgent need for safe, efficacious, and accessible drug treatments to treat coronavirus disease 2019 (COVID‐19) prompted a global effort to evaluate drug repurposing opportunities. Pyronaridine and amodiaquine are both components of approved antimalarials with in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). In vitro activity does not always translate to clinical efficacy across a therapeutic dose range. This study applied available, verified, physiologically based pharmacokinetic (PBPK) models for pyronaridine, amodiaquine, and its active metabolite N‐desethylamodiaquine (DEAQ) to predict drug concentrations in lung tissue relative to plasma or blood in the default healthy virtual population. Lung exposures were compared to published data across the reported range of in vitro EC50 values against SARS‐CoV‐2. In the multicompartment permeability‐limited PBPK model, the predicted total Cmax in lung mass for pyronaridine was 34.2 μM on Day 3, 30.5‐fold greater than in blood (1.12 μM) and for amodiaquine was 0.530 μM, 8.83‐fold greater than in plasma (0.060 μM). In the perfusion‐limited PBPK model, the DEAQ predicted total Cmax on Day 3 in lung mass (30.2 μM) was 21.4‐fold greater than for plasma (1.41 μM). Based on the available in vitro data, predicted drug concentrations in lung tissue for pyronaridine and DEAQ, but not amodiaquine, appeared sufficient to inhibit SARS‐CoV‐2 replication. Simulations indicated standard dosing regimens of pyronaridine‐artesunate and artesunate‐amodiaquine have potential to treat COVID‐19. These findings informed repurposing strategies to select the most relevant compounds for clinical investigation in COVID‐19. Clinical data for model verification may become available from ongoing clinical studies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3