Canonical and extra‐telomeric functions of telomerase: Implications for healthy ageing conferred by endurance training

Author:

Denham Joshua12ORCID

Affiliation:

1. School of Health and Medical Sciences University of Southern Queensland Toowoomba Queensland Australia

2. Centre for Health Research Institute for Resilient Regions Toowoomba Queensland Australia

Abstract

AbstractTelomerase preserves genomic integrity by maintaining and protecting the telomeres. Seminal findings from 1985 revealed the canonical role of telomerase and motivated investigations into potential therapeutic strategies to combat one of the hallmarks of ageing—telomere attrition. Since then, the field of telomere biology has rapidly expanded, with telomerase serving essential roles in cancer and cell development through its canonical function. However, telomerase also exerts critical extra‐telomeric functions through its protein (telomerase reverse transcriptase, TERT) and RNA components (telomerase RNA component, TERC). Telomerase re‐activation or ectopic expression promotes survival and permits unlimited proliferation in tumours and healthy non‐malignant cells. TERT gene therapies improve health and lifespan in ageing mice and mouse models of age‐related diseases. The extra‐telomeric functions of telomerase are critical to ageing. These include protection against oxidative stress, orchestration of chromatin modifications and transcription, and regulation of angiogenesis and metabolism (e.g. mitochondrial function and glucose control). Given these biological functions are key adaptations to endurance training and the recent meta‐analytical findings that indicate exercise up‐regulates TERT and telomerase, a comprehensive discussion on the implications of the canonical and extra‐telomeric roles of telomerase is warranted. This review highlights the therapeutic benefits of telomerase‐based treatments for idiopathic and chronic diseases that are linked to ageing. Discussion on the canonical and extra‐telomeric roles of telomerase are presented, followed by a detailed summary of the evidence on how exercise influences telomerase. Finally, the potential cell signalling underpinning the exercise‐induced modulation of telomerase are discussed with directions for future research.

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3