Effect of energy input on fatigue crack growth behavior of titanium alloy Ti6Al4V made by WAAM‐CMT

Author:

El Hassanin Andrea1,Campatelli Gianni2,Sepe Raffaele3ORCID,Silvestri Alessia Teresa1ORCID,Squillace Antonino1

Affiliation:

1. Dept. of Chemical, Materials and Industrial Production Engineering University of Naples Federico II Naples Italy

2. Dept. Of Industrial Engineering University of Florence Florence Italy

3. Dept. of Industrial Engineering University of Salerno Salerno Italy

Abstract

AbstractThis work deals with the investigation and characterization of Ti6Al4V parts produced with an intriguing manufacturing process belonging to the Wire Arc Additive Manufacturing (WAAM) family: the Cold Metal Transfer technology (CMT). Wall‐shaped parts were produced according to different process parameters, namely the wire feed speed and voltage–current combinations, leading to different energy inputs. The parts were characterized in terms of surface morphology, microhardness, microstructure, tensile properties, and fatigue crack growth. The results suggested that the investigated deposition parameters led to similar results. Moreover, the mechanical and fatigue crack growth behavior was in line with parts of the same alloy produced through other manufacturing routes, whereas the microstructure type was the result of the fast cooling of the molten material. Finally, considering the simple system adopted to avoid oxidation during the deposition stage, the results suggested that CMT is a promising manufacturing technique for titanium alloy semifinished parts.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3