Affiliation:
1. Engineering Research Center of High Performance Copper Alloy Materials and Processing Ministry of Education, Hefei University of Technology Hefei China
2. School of Materials Science and Engineering Hefei University of Technology Hefei Anhui China
3. National Key Laboratory of Science and Technology on Vacuum Technology & Physics Lanzhou Institute of Physics Lanzhou China
Abstract
AbstractLaB6–HfB2 composites with the different HfB2 contents (10 wt.%, 30 wt.%, 50 wt.%, 70 wt.%, and 90 wt.%) were densified by spark plasma sintering (SPS). Results showed that the densification mechanism of the composite transformed from the grain boundary diffusion into the dislocation climbing mechanism as the holding time was extended from 0 to 15 min under temperature range of 1750–1900°C. The HfB2 phase could effectively limit the grain growth of LaB6 phase, and the dynamic growth of the grain was governed by grain boundary diffusion. Both the Berkovich hardness and Vickers hardness obeyed the normal indentation size effect. LaB6–70 wt.% HfB2 composite had the highest fracture toughness of 3.98 ± .43 MPa m.5, whereas the highest current density of 18.34 A/cm2 belonged to LaB6–30 wt.% HfB2 composite. All the results demonstrated that LaB6–HfB2 composite was a promising material with the excellent structural and functional performance.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities