Apicidin attenuates memory deficits by reducing the Aβ load inAPP/PS1mice

Author:

Luo Biao1ORCID,Chen Jian1,Zhou Gui‐Feng1,Xie Xiao‐Yong1,Tang Jing1,Wen Qi‐Xin1,Song Li1,Xie Shi‐Qi1,Long Yan2,Chen Guo‐Jun1,Hu Xiao‐Tong23ORCID

Affiliation:

1. Department of Neurology The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology Chongqing China

2. Department of Health Management, Daping Hospital Army Medical University Chongqing China

3. Department of Neurology The Ninth People's Hospital of Chongqing Chongqing China

Abstract

AbstractAimsAmyloid beta (Aβ) is an important pathological feature of Alzheimer's disease (AD). A disintegrin and metalloproteinase 10 (ADAM10) can reduce the production of toxic Aβ by activating the nonamyloidogenic pathway of amyloid precursor protein (APP). We previously found that apicidin, which is a histone deacetylase (HDAC) inhibitor, can promote the expression of ADAM10 and reduce the production of Aβ in vitro. This study was designed to determine the potential of apicidin treatment to reverse learning and memory impairments in an AD mouse model and the possible correlation of these effects with ADAM10.MethodsNine‐month‐old APP/PS1 mice and C57 mice received intraperitoneal injections of apicidin or vehicle for 2 months. At 11 months of age, we evaluated the memory performance of mice with Morris water maze (MWM) and context fear conditioning tests. The Aβ levels were assessed in mouse brain using the immunohistochemical method and ELISA. The expression of corresponding protein involved in proteolytic processing of APP and the phosphorylation of tau were assessed by Western blotting.ResultsApicidin reversed the deficits of spatial reference memory and contextual fear memory, attenuated the formation of Aβ‐enriched plaques, and decreased the levels of soluble and insoluble Aβ40/42 in APP/PS1 mice. Moreover, apicidin significantly increased the expression of ADAM10, improved the level of sAPPα, and reduced the production of sAPPβ, but did not affect the levels of phosphorylated tau in APP/PS1 mice.ConclusionApicidin significantly improves the AD symptoms of APP/PS1 mice by regulating the expression of ADAM10, which may contribute to decreasing the levels of Aβ rather than decreasing the phosphorylation of tau.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3