Human primary cells can tell body time: Dedicated to Steven A. Brown

Author:

Katsioudi Georgia1234ORCID,Biancolin Andrew D.1234ORCID,Jiménez‐Sanchez Cecilia1234,Dibner Charna1234ORCID

Affiliation:

1. Department of Surgery, Division of Thoracic and Endocrine Surgery University Hospitals of Geneva Geneva Switzerland

2. Department of Cell Physiology and Metabolism, Faculty of Medicine University of Geneva Geneva Switzerland

3. Diabetes Center, Faculty of Medicine University of Geneva Geneva Switzerland

4. Institute of Genetics and Genomics of Geneva (iGE3) Geneva Switzerland

Abstract

AbstractThe field of chronobiology has advanced significantly since ancient observations of natural rhythms. The intricate molecular architecture of circadian clocks, their hierarchical organization within the mammalian body, and their pivotal roles in organ physiology highlight the complexity and significance of these internal timekeeping mechanisms. In humans, circadian phenotypes exhibit considerable variability among individuals and throughout the individual's lifespan. A fundamental challenge in mechanistic studies of human chronobiology arises from the difficulty of conducting serial sampling from most organs. The concept of studying circadian clocks in vitro relies on the groundbreaking discovery by Ueli Schibler and colleagues that nearly every cell in the body harbours autonomous molecular oscillators. The advent of circadian bioluminescent reporters has provided a new perspective for this approach, enabling high‐resolution continuous measurements of cell‐autonomous clocks in cultured cells, following in vitro synchronization pulse. The work by Steven A. Brown has provided compelling evidence that clock characteristics assessed in primary mouse and human skin fibroblasts cultured in vitro represent a reliable estimation of internal clock properties in vivo. The in vitro approach for studying molecular human clocks in cultured explants and primary cells, pioneered by Steve Brown, represents an invaluable tool for assessing inter‐individual differences in circadian characteristics alongside comprehensive genetic, biochemical and functional analyses. In a broader context, this reliable and minimally invasive approach offers a unique perspective for unravelling the functional inputs and outputs of oscillators operative in nearly any human tissue in physiological contexts and across various pathologies.

Funder

Krebsliga Schweiz

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Vontobel-Stiftung

Fondation Novartis Consumer Health

Olga Mayenfisch Stiftung

Velux Stiftung

Fondation Leenaards

Fondation ISREC

Gertrude von Meissner-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3