Proline‐directed yeast and human MAP kinases phosphorylate the Dot1p/DOT1L histone H3K79 methyltransferase

Author:

Separovich Ryan J.1ORCID,Karakatsanis Nicola M.1ORCID,Gao Kelley1,Fuh David1,Hamey Joshua J.1ORCID,Wilkins Marc R.1ORCID

Affiliation:

1. Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney Australia

Abstract

Disruptor of telomeric silencing 1 (Dot1p) is an exquisitely conserved histone methyltransferase and is the sole enzyme responsible for H3K79 methylation in the budding yeast Saccharomyces cerevisiae. It has been shown to be highly phosphorylated in vivo; however, the upstream kinases that act on Dot1p are almost entirely unknown in yeast and all other eukaryotes. Here, we used in vitro and in vivo kinase discovery approaches to show that mitogen‐activated protein kinase HOG1 (Hog1p) is a bona fide kinase of the Dot1p methyltransferase. In vitro kinase assays showed that Hog1p phosphorylates Dot1p at multiple sites, including at several proline‐adjacent sites that are consistent with known Hog1p substrate preferences. The activity of Hog1p was specifically enhanced at these proline‐adjacent sites on Dot1p upon Hog1p activation by the osmostress‐responsive MAP kinase kinase PBS2 (Pbs2p). Genomic deletion of HOG1 reduced phosphorylation at specific sites on Dot1p in vivo, providing further evidence for Hog1p kinase activity on Dot1p in budding yeast cells. Phenotypic analysis of knockout and phosphosite mutant yeast strains revealed the importance of Hog1p‐catalysed phosphorylation of Dot1p for cellular responses to ultraviolet‐induced DNA damage. In mammalian systems, this kinase–substrate relationship was found to be conserved: human DOT1L (the ortholog of yeast Dot1p) can be phosphorylated by the proline‐directed kinase p38β (also known as MAPK11; the ortholog of yeast Hog1p) at multiple sites in vitro. Taken together, our findings establish Hog1p and p38β as newly identified upstream kinases of the Dot1p/DOT1L H3K79 methyltransferase enzymes in eukaryotes.

Funder

Australian Research Council

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3