Engineered coumarin accumulation reduces mycotoxin‐induced oxidative stress and disease susceptibility

Author:

Beesley Alexander1,Beyer Sebastian F.1,Wanders Verena1,Levecque Sophie1,Bredenbruch Sandra2,Habash Samer S.2,Schleker A. Sylvia S.2,Gätgens Jochem3,Oldiges Marco3,Schultheiss Holger4,Conrath Uwe1ORCID,Langenbach Caspar J. G.1ORCID

Affiliation:

1. Department of Plant Physiology RWTH Aachen University Aachen Germany

2. Department of Molecular Phytomedicine University of Bonn Bonn Germany

3. Department of Bioprocesses and Bioanalytics Research Center Jülich GmbH Jülich Germany

4. BASF Plant Science Company GmbH Agricultural Center Limburgerhof Germany

Abstract

SummaryCoumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY‐2 suspension cells. We did so by overexpressing A. thaliana feruloyl‐CoA 6‐hydroxylase 1 (AtF6’H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin‐accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root‐parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil‐borne pathogenic fungus Fusarium virguliforme. Because mycotoxin‐induced accumulation of reactive oxygen species and cell death were reduced in the AtF6’H1‐overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin‐hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3