Middle Miocene volcanic flare up preceding and synchronous with the Langhian/Serravallian sea‐level decline in the North Pannonian Basin: Insights from 40Ar/39Ar dating, geo‐seismic analysis and 3D visualization of the subterranean Kráľová stratovolcano

Author:

Rybár Samuel12ORCID,Šarinová Katarína3ORCID,Jourdan Fred45,Mayers Celia4,Sliva Ľubomír6

Affiliation:

1. Department of Geology and Paleontology, Faculty of Natural Sciences Comenius University Bratislava Slovakia

2. Department of Geodesy and Mine Surveying, Faculty of Mining and Geology Technical University of Ostrava Ostrava Poruba Czech Republic

3. Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences Comenius University Bratislava Slovakia

4. School of Earth and Planetary Sciences, SSTC and TIGeR Curtin University Perth Western Australia Australia

5. Western Australian Argon Isotope Facility and John de Laeter Centre Curtin University Perth Western Australia Australia

6. NAFTA a.s. Plavecký Štvrtok Slovakia

Abstract

AbstractThe Pannonian Basin System originated from the collision of the African and European tectonic plates, followed by the Miocene extensional collapse that led to the development of a back‐arc basins. Accurate dating is essential to comprehend the tectono‐volcanic evolution of the region, particularly in the under‐studied Danube Basin. Single‐grain 40Ar/39Ar dating has revealed that volcanic activity in the Danube Basin commenced around 14.1 million years ago, aligning with previous biostratigraphic and radioisotope data from nearby volcanic fields. The initial Middle Miocene pyroclastic deposits were generated by intermediate high K calc‐alkaline magmas, contributing significantly to the deposition of thick layers of fine vitric tuffs. The timing and chemistry of the volcanism are consistent with the Badenian rift phase in the Middle Miocene within the Carpathian–Pannonian region, suggesting an intraplate back‐arc volcanic environment. Three‐dimensional imaging has exposed the buried Kráľová stratovolcano, revealing its impressive scale with a thickness between 2620 and 5000 m and a base diameter of 18–30 km. Such dimensions place it among the ranks of the world's largest stratovolcanoes, indicating its substantial impact on the evolution of the Carpathian–Pannonian area. The complex formation history of the stratovolcano points to multiple phases of growth. Furthermore, the basin controlling Mojmírovce‐Rába fault's intersection with the stratovolcano implies that fault activity was subsequent to the volcanic activity, being younger than 14.1 million years. Regional age data consistently indicates that volcanic activity in the Danube Basin reached its zenith just prior to and during the lower/upper Badenian sea‐level fall (Langhian/Serravallian). K‐metasomatism is unique to the stratovolcanic structures and is not observed in the wider regional setting. This study supports the notion of an intricate, interconnected subterranean intrusive system within the stratovolcano, underscoring the complex interplay between geological structures and volcanic processes.

Funder

Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky

Agentúra na Podporu Výskumu a Vývoja

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3