Global patterns of tree wood density

Author:

Yang Hui1ORCID,Wang Siyuan12,Son Rackhun13,Lee Hoontaek12,Benson Vitus14ORCID,Zhang Weijie1,Zhang Yahai5,Zhang Yuzhen1,Kattge Jens16ORCID,Boenisch Gerhard1,Schepaschenko Dmitry7ORCID,Karaszewski Zbigniew8,Stereńczak Krzysztof9,Moreno‐Martínez Álvaro10,Nabais Cristina11,Birnbaum Philippe1213,Vieilledent Ghislain12ORCID,Weber Ulrich1,Carvalhais Nuno1414ORCID

Affiliation:

1. Max Planck Institute for Biogeochemistry Jena Germany

2. Institute of Photogrammetry and Remote Sensing Technische Universität Dresden Dresden Germany

3. Department of Environmental Atmospheric Sciences Pukyong National University Busan South Korea

4. ELLIS Unit Jena Jena Germany

5. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science Beijing Normal University Beijing China

6. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany

7. International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria

8. Research Group of Chemical Technology and Environmental Protection Łukasiewicz Research Network Poznań Institute of Technology Center of Sustainable Economy Poznań Poland

9. Department of Geomatics Forest Research Institute Raszyn Poland

10. Image Processing Laboratory (IPL) Universitat de València València Spain

11. Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences University of Coimbra Coimbra Portugal

12. AMAP Univ Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France

13. Institut Agronomique néo‐Calédonien (IAC) Nouméa New Caledonia

14. Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de Ciências e Tecnologia, FCT Universidade Nova de Lisboa Caparica Portugal

Abstract

AbstractWood density is a fundamental property related to tree biomechanics and hydraulic function while playing a crucial role in assessing vegetation carbon stocks by linking volumetric retrieval and a mass estimate. This study provides a high‐resolution map of the global distribution of tree wood density at the 0.01° (~1 km) spatial resolution, derived from four decision trees machine learning models using a global database of 28,822 tree‐level wood density measurements. An ensemble of four top‐performing models combined with eight cross‐validation strategies shows great consistency, providing wood density patterns with pronounced spatial heterogeneity. The global pattern shows lower wood density values in northern and northwestern Europe, Canadian forest regions and slightly higher values in Siberia forests, western United States, and southern China. In contrast, tropical regions, especially wet tropical areas, exhibit high wood density. Climatic predictors explain 49%–63% of spatial variations, followed by vegetation characteristics (25%–31%) and edaphic properties (11%–16%). Notably, leaf type (evergreen vs. deciduous) and leaf habit type (broadleaved vs. needleleaved) are the most dominant individual features among all selected predictive covariates. Wood density tends to be higher for angiosperm broadleaf trees compared to gymnosperm needleleaf trees, particularly for evergreen species. The distributions of wood density categorized by leaf types and leaf habit types have good agreement with the features observed in wood density measurements. This global map quantifying wood density distribution can help improve accurate predictions of forest carbon stocks, providing deeper insights into ecosystem functioning and carbon cycling such as forest vulnerability to hydraulic and thermal stresses in the context of future climate change.

Funder

H2020 European Research Council

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3