Extracellular vesicles in tumor angiogenesis and resistance to anti‐angiogenic therapy

Author:

Ye Zi‐Wu1,Yu Zi‐Li12ORCID,Chen Gang1234,Jia Jun12

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology Wuhan University Wuhan China

2. Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology Wuhan University Wuhan China

3. TaiKang Center for Life and Medical Sciences Wuhan University Wuhan China

4. Frontier Science Center for Immunology and Metabolism Wuhan University Wuhan China

Abstract

AbstractTumor angiogenesis plays an important role in the development of cancer as it allows the delivery of oxygen, nutrients, and growth factors as well as tumor dissemination to distant organs. Although anti‐angiogenic therapy (AAT) has been approved for treating various advanced cancers, this potential strategy has limited efficacy due to resistance over time. Therefore, there is a critical need to understand how resistance develops. Extracellular vesicles (EVs) are nano‐sized membrane‐bound phospholipid vesicles produced by cells. A growing body of evidence suggests that tumor cell‐derived EVs (T‐EVs) directly transfer their cargoes to endothelial cells (ECs) to promote tumor angiogenesis. Importantly, recent studies have reported that T‐EVs may play a major role in the development of resistance to AAT. Moreover, studies have demonstrated the role of EVs from non‐tumor cells in angiogenesis, although the mechanisms involved are still not completely understood. In this review, we provide a comprehensive description of the role of EVs derived from various cells, including tumor cells and non‐tumor cells, in tumor angiogenesis. Moreover, from the perspective of EVs, this review summarized the role of EVs in the resistance to AAT and the mechanisms involved. Due to their role in the resistance of AAT, we here proposed potential strategies to further improve the efficacy of AAT by inhibiting T‐EVs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cancer Research,Oncology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3