Influence of METTL3 knockdown on PDLSC osteogenesis in E. coliLPS‐induced inflammation

Author:

Chen Hang123ORCID,Peng Limin123,Wang Zhenxiang123ORCID,He Yujuan4,Zhang Xiaonan123ORCID

Affiliation:

1. College of Stomatology Chongqing Medical University Chongqing China

2. Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing Medical University Chongqing China

3. Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing Medical University Chongqing China

4. Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China

Abstract

AbstractObjectiveThis study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms.Materials and MethodsPDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT‐qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway.ResultsMETTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation.ConclusionMETTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS‐stimulated inflammatory microenvironments of PDLSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3