Evolution of m6A‐related genes in insects and the function of METTL3 in silkworm embryonic development

Author:

Liu Shuai‐Qi1,Jia Shun‐Ze1,Tian Huan1,Li Ying‐Hui1,Hu Kai‐Wen1,Tao Jian‐Guo1,Lu Yi‐Cheng1,Xu Yu‐Song1,Wang Hua‐Bing1ORCID

Affiliation:

1. Department of Economic Zoology, College of Animal Sciences Zhejiang University Hangzhou China

Abstract

AbstractN6‐methyladenosine (m6A) plays a key role in many biological processes. However, the function and evolutionary relationship of m6A‐related genes in insects remain largely unknown. Here we analysed the phylogeny of m6A‐related genes among 207 insect species and found that m6A‐related genes are evolutionarily conserved in insects. Subcellular localization experiments of m6A‐related proteins in BmN cells confirmed that BmYTHDF3 was localized in the cytoplasm, BmMETTL3, BmMETTL14, and BmYTHDC were localized in the nucleus, and FL2D was localized to both the nucleus and cytoplasm. We examined the expression patterns of m6A‐related genes during the embryonic development of Bombyx mori. To elucidate the function of BmMETTL3 during the embryonic stage, RNA sequencing was performed to measure changes in gene expression in silkworm eggs after BmMETTL3 knockdown, as well as in BmN cells overexpressing BmMETTL3. The global transcriptional pattern showed that knockdown of BmMETTL3 affected multiple cellular processes, including oxidoreductase activity, transcription regulator activity, and the cation binding. In addition, transcriptomic data revealed that many observed DEGs were associated with fundamental metabolic processes, including carbon metabolism, purine metabolism, amino acid biosynthesis, and the citrate cycle. Interestingly, we found that knockdown of BmMETTL3 significantly affected Wnt and Toll/Imd pathways in embryos. Taken together, these results suggest that BmMETTL3 plays an essential role in the embryonic development of B. mori, and deepen our understanding of the function of m6A‐related genes in insects.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Insect Science,Genetics,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3