On the structure and properties of hydrothermally toughened soda–lime silicate float glass

Author:

Sorarù Gian Domenico1ORCID,Mariazzi Sebastiano2,Barozzi Mario3,Canteri Roberto3,Cassetta Michele14ORCID,Pellegrini Damiano1,Daldosso Nicola4,Brusa Roberto Sennen2,Biesuz Mattia15ORCID

Affiliation:

1. Department of Industrial Engineering University of Trento Trento Italy

2. Department of Physics University of Trento Trento Italy

3. Fondazione Bruno Kessler, Center S&D Trento Italy

4. Department of Engineering for Innovation Medicine University of Verona Verona Italy

5. INSTM Firenze Italy

Abstract

AbstractHydrothermal treatments of soda–lime silicate glass cause a remarkable improvement in the resistance to flaw formation with an increase of the critical load to ≈1 kgf. This remarkable effect is achieved even if the reaction layer between the glass and water solution is well below 1 µm. Positron Doppler broadening spectroscopy (DBS) reveals that the hydrothermal treatment causes a drop in the free volume of the glass network near the surface connected with the diffusion of molecular water whose presence was further confirmed by Fourier transformed infrared (FTIR) spectroscopy and secondary ion mass spectrometry (SIMS). Based on FTIR and SIMS, we also argue that the hydrothermal ion exchange is a double‐step process: first H+ substitutes Na+ in the network, and following molecular water permeates the system. Moreover, we show that the presence of water in the network is fundamental in stabilizing the modified glass surface leading to toughening. Once molecular water is released, the network is quickly polymerized and becomes more brittle. Hydrothermal toughening is only a partially reversible process, once water is released it is not possible to reobtain the same properties with a second treatment. Finally, it is shown that air and tin side of the float glass perform differently as a result of different water diffusion kinetics related to dissimilarities in the network density.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3