Surface ionic coordination of Al2O3–CaO–based molten slag induced by structural relaxation

Author:

Suzuki Masanori1ORCID,Asano Yusuke1,Ishii Yoshiki2ORCID

Affiliation:

1. Graduate School of Engineering Department of Data Science Osaka University Suita Japan

2. School of Frontier Engineering Department of Data Science Kitasato University Sagamihara Japan

Abstract

AbstractThe surface tensions of molten oxides depend strongly on the structural relaxation of the surface region. The mechanism of surface structural relaxation for molten oxide slags is complex. The surface tension of calcium aluminate slag is minimal at an intermediate composition, although the critical reason has not been identified. Here, two novel approaches were used to evaluate the features of surface ionic structures in the molten state for the range of 25–50 mol% Al2O3: (1) X‐ray absorption analysis of oxygen and cationic elements in glass samples after surface relaxation treatment, and (2) molecular dynamics simulations, based on a polarizable‐ion model, of the ionic distribution in a molten slag with vacuum/melt interfaces. The results indicate that bridging oxygen (BO) ions are preferred to non‐BOs in the surface region. In calcium aluminate slag, BOs are formed by connecting two AlO4 tetrahedrons with charge compensation of two Al3+ ions with one Ca2+ ion. Additionally, the above approaches were used to qualify the effect on the surface ionic structure of adding 1–20 mol% SiO2 to the calcium aluminate slag. The results indicated that the SiO4 tetrahedrons incorporate the vertex connection with AlO4 tetrahedrons to form BOs in the surface region.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3