Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits

Author:

Beaulieu Jean1ORCID,Nadeau Simon2,Ding Chen1ORCID,Celedon Jose M.3,Azaiez Aïda1,Ritland Carol34,Laverdière Jean‐Philippe1,Deslauriers Marie2,Adams Greg5,Fullarton Michele6,Bohlmann Joerg347,Lenz Patrick12ORCID,Bousquet Jean1

Affiliation:

1. Canada Research Chair in Forest Genomics Institute of Systems and Integrative Biology and Systems, and Centre for Forest Research Université Laval Québec QC Canada

2. Natural Resources Canada Canadian Wood Fibre Centre Québec QC Canada

3. Michael Smith Laboratories University of British Columbia Vancouver BC Canada

4. Department of Forest and Conservation Sciences University of British Columbia Vancouver BC Canada

5. J.D. Irving Limited Sussex NB Canada

6. Forest Development Section Natural Resources and Energy Development Government of New Brunswick Island View NB Canada

7. Department of Botany University of British Columbia Vancouver BC Canada

Abstract

AbstractWith climate change, the pressure on tree breeding to provide varieties with improved resilience to biotic and abiotic stress is increasing. As such, pest resistance is of high priority but has been neglected in most tree breeding programs, given the complexity of phenotyping for these traits and delays to assess mature trees. In addition, the existing genetic variation of resistance and its relationship with productivity should be better understood for their consideration in multitrait breeding. In this study, we evaluated the prospects for genetic improvement of the levels of acetophenone aglycones (AAs) in white spruce needles, which have been shown to be tightly linked to resistance to spruce budworm. Furthermore, we estimated the accuracy of genomic selection (GS) for these traits, allowing selection at a very early stage to accelerate breeding. A total of 1,516 progeny trees established on five sites and belonging to 136 full‐sib families from a mature breeding population in New Brunswick were measured for height growth and genotyped for 4,148 high‐quality SNPs belonging to as many genes along the white spruce genome. In addition, 598 trees were assessed for levels of AAs piceol and pungenol in needles, and 578 for wood stiffness. GS models were developed with the phenotyped trees and then applied to predict the trait values of unphenotyped trees. AAs were under moderate‐to‐high genetic control (h2: 0.43–0.57) with null or marginally negative genetic correlations with other traits. The prediction accuracy of GS models (GBLUP) for AAs was high (PAAC: 0.63–0.67) and comparable or slightly higher than pedigree‐based (ABLUP) or BayesCπ models. We show that AA traits can be improved and that GS speeds up the selection of improved trees for insect resistance and for growth and wood quality traits. Various selection strategies were tested to optimize multitrait gains.

Publisher

Wiley

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3