Woody encroachment: social–ecological impacts and sustainable management

Author:

Ding Jingyi1ORCID,Eldridge David J.2

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science Beijing Normal University No. 19, Xinjiekouwai Street, Haidian District Beijing 100875 China

2. Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales High Street, Kensington Sydney 2052 New South Wales Australia

Abstract

ABSTRACTWoody plants are encroaching across terrestrial ecosystems globally, and this has dramatic effects on how these systems function and the livelihoods of producers who rely on the land to support livestock production. Consequently, the removal of woody plants is promoted widely in the belief that it will reinstate former grasslands or open savanna. Despite this popular management approach to encroachment, we still have a relatively poor understanding of the effects of removal on society, and of alternative management practices that could balance the competing needs of pastoral production, biodiversity conservation and cultural values. This information is essential for maintaining both ecological and societal benefits in encroached systems under predicted future climate changes. In this review, we provide a comprehensive synthesis of the social–ecological perspectives of woody encroachment based on recent studies and global meta‐analyses by assessing the ecological impacts of encroachment and its effects on sustainable development goals (SDGs) when woody plants are retained and when they are removed. We propose a working definition of woody encroachment based on species‐ and community‐level characteristics; such a definition is needed to evaluate accurately the effects of encroachment. We show that encroachment is a natural process of succession rather than a sign of degradation, with encroachment resulting in an overall 8% increase in ecosystem multifunctionality. Removing woody plants can increase herbaceous plant richness, biomass and cover, but at the expense of biocrust cover. The effectiveness of woody plant removal depends on plant identity, and where, when and how they are removed. Under current management practices, either removal or retention of woody plants can induce trade‐offs among ecosystem services, with no management practice maximising all SDGs [e.g. SDG2 (end hunger), SDG13 (climate change), SDG 15 (combat desertification)]. Given that encroachment of woody plants is likely to increase under future predicted hotter and drier climates, alternative management options such as carbon farming and ecotourism could be effective land uses for areas affected by encroachment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Hermon Slade Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3