Small cysteine‐rich peptides resembling antimicrobial peptides have been under‐predicted in plants

Author:

Silverstein Kevin A.T.,Moskal William A.,Wu Hank C.,Underwood Beverly A.,Graham Michelle A.,Town Christopher D.,VandenBosch Kathryn A.

Abstract

SummaryMulticellular organisms produce small cysteine‐rich antimicrobial peptides as an innate defense against pathogens. While defensins, a well‐known class of such peptides, are common among eukaryotes, there are other classes restricted to the plant kingdom. These include thionins, lipid transfer proteins and snakins. In earlier work, we identified several divergent classes of small putatively secreted cysteine‐rich peptides (CRPs) in legumes [Graham et al. (2004)Plant Physiol. 135, 1179–97]. Here, we built sequence motif models for each of these classes of peptides, and iteratively searched for related sequences within the comprehensive UniProt protein dataset, the Institute for Genomic Research’s 33 plant gene indices, and the entire genomes of the model dicot, Arabidopsis thaliana, and the model monocot and crop species, Oryza sativa (rice). Using this search strategy, we identified ∼13 000 plant genes encoding peptides with common features: (i) an N‐terminal signal peptide, (ii) a small divergent charged or polar mature peptide with conserved cysteines, (iii) a similar intron/exon structure, (iv) spatial clustering in the genomes studied, and (v) overrepresentation in expressed sequences from reproductive structures of specific taxa. The identified genes include classes of defensins, thionins, lipid transfer proteins, and snakins, plus other protease inhibitors, pollen allergens, and uncharacterized gene families. We estimate that these classes of genes account for ∼2–3% of the gene repertoire of each model species. Although 24% of the genes identified were not annotated in the latest Arabidopsis genome releases (TIGR5, TAIR6), we confirmed expression via RT‐PCR for 59% of the sequences attempted. These findings highlight limitations in current annotation procedures for small divergent peptide classes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3