Spectrophotometric colour matching algorithm for top‐dyed mélange yarn, based on an artificial neural network

Author:

Shen Jiajia12ORCID,Zhou Xiang2

Affiliation:

1. College of Material and Textile Engineering Jiaxing University Jiaxing Zhejiang 314001 China

2. College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China

Abstract

Colour, the first element of quality control of textile products, is a complex subject relating to physical optics, psychology, and the human visual system. Colour matching remains one of the major problems in the textile industry. Mélange yarn is a class of textile product with a specific colour appearance, which colour is mainly affected by colour matching of the dyed fibres and their ratio for spinning rather than by the dyeing process. The existing colour matching models for mélange yarn derived from specific types of fibre or specific spinning processes are restricted by the adopted conditions and parameters of the model, resulting in low universal applicability and low accuracy. In this paper, a spectrophotometric colour matching algorithm based on the back‐propagation (BP) neural network and its processes were proposed. The weighted average spectrum was predicted by a BP neural network, followed by recipe prediction from the weighted average with constrained least squares. The results showed that the average colour difference of practical samples, based on the prediction of nine blind testing targets, was 0.79 CMC (2:1) units if more than two a priori training samples were used. This result indicated the capability and practicality of accurate prediction of colour matching for top‐dyed mélange yarn by this novel method.

Funder

Jiaxing Innovation Team of Leather and Textile Cleaner Production

Jiaxing Project of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3